Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This document outlines the control software considerations for the D.U.C.K (Detection of Unusual Cosmic casKades). The primary goal of this software is to provide users with the ability to control Flash Analog to Digital Converter functions and conduct DAQ (Data Acquisition) operations as well as set the file format for saving the data. The ROOT software framework was found to be particularly useful for DAQ and serves as the primary tool for storing and analyzing our data. Limitations of the software are being considered, and further development is being conducted.more » « lessFree, publicly-accessible full text available January 14, 2026
-
Hardware random number generators (HRNG) are widely used in the computer world for security purposes as well as in the science world as a source of the high-quality randomness for the models and simulations. Currently existing HRNG are either costly or very slow and of questionable quality. This work proposes a simple design of the HRNG based on the low-number photon absorption by a detector (a photo-multiplier tube of a silicon-based one i.e. SiPM, MPPC, etc.) that can provide a large volume of high-quality random numbers. The prototype design, different options of processing and the testing of quality of the generator output are presented.more » « lessFree, publicly-accessible full text available December 17, 2025
-
A large mystery that is currently being investigated by the High Energy Physics (HEP) field is the origin and the nature of the Ultra-high energy Cosmic Rays (UHECR). Coming from deep within the Universe, they bring information from afar as well as on possible new physics. This talk reports on the development and design of DUCK (Detector system of Unusual Cosmic-ray casKades), a new cosmic-rays detector at the Clayton State University campus with ns-level detection resolution. The main scientific importance for the DUCK project will be to contribute to the general EAS event analysis methodology novel approach using the full waveform and detector response width, and to an independent verification of the detection of the ‘unusual’cosmic ray events by the Horizon-T detector system that may be indicating direction towards the novel physics possibilities.more » « lessFree, publicly-accessible full text available December 23, 2025
-
This article covers the overall design hardware choices for the prototyping activities for the DUCK (Detector system of Unusual Cosmic ray casKades). The primary goal of the DUCK system is to verify the existence of the unusual cosmic events reported by other collaborations and to look at the possibilities of adding innovations to the EAS (Extensive Atmospheric Shower) analysis methods of the EAS disk measurements at the observation level. Additionally, design and construction of the system provide educational experience to the students involved in the project and are developing the research capabilities of the university campus. The prototyping process has helped to choose between various design solutions in the process of optimizing of the individual detector components.more » « less
-
null (Ed.)The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic-ray ensembles (CRE): groups of at least two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g., as products of photon–photon interactions), and exotic scenarios (e.g., as results of decay of Super-Heavy Dark Matter particles). Their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic-ray energy spectrum, with a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. As the CRE are predominantly expected to be spread over large areas and, due to the expected wide energy range of the contributing particles, such a CRE detection might only be feasible when using all available cosmic-ray infrastructure collectively, i.e., as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE and, in particular, to pool together cosmic-ray data to support specific CRE detection strategies.more » « less
An official website of the United States government
